martes, 7 de junio de 2011

Trapecio

Método del trapezoide:

Sea p1(x) el polinomio lineal que interpola a f(x) en x=a y x=b, i.e.,

Usando la fórmula para el area de un trapezoide o integrando p1(x) directamente se obtiene que

Asi que podemos escribir la aproximación:
 (*)
Más adelante análizamos en detalles el error en esta aproximación. Por el momento basta observar que la aproximación es buena siempre que f sea aproximadamente lineal. En el caso general, dividimos el intervalo [a,b] en subintervalos más pequeños y aplicamos la fórmula anterior en cada subintervalo. Si los subintervalos son suficientemente pequeños, entonces f es aproximadamente lineal en cada subintervalo y la aproximación es buena. Definimos el largo de los subintervalos por:

El j-esimo subintervalo esta dado por [xj-1,xj] donde

Podemos escribir ahora que:

Usando la aproximación (*) podemos escribir

Usando esto en la fórmula anterior, obtenemos que

Esto se conoce como la regla (compuesta) del trapezoide para aproximar I(f).

Ejemplo 1: Usando la regla del trapezoide con n=2 y n=4 aproximamos:

cuyo valor exacto es  correcto al número de cifras mostradas.
 Para n=2 tenemos que h=(2-1)/2=0.5, x0=1, x1=1.5, x2=2.

 Ahora


Con n=4 tenemos h=(2-1)/4=0.25, x0=1, x1=1.25, x2=1.5, x3=1.75, x2=2, de modo que





No hay comentarios.:

Publicar un comentario